
Strange Loop Notes
Release

Nathan Yergler

January 09, 2015

Contents

1 Emerging Languages Camp 3
1.1 Gershwin: Stack-based Concatenative Clojure . 3
1.2 Daimio: a language for sharing . 5
1.3 Babel: An Untyped, Stack-based HLL . 6
1.4 Noether: Symmetry in Prog Lang Design . 7
1.5 Nimrod: A new approach to meta programming . 7
1.6 Dao Programming Language for Scripting and Computing . 8
1.7 Axiomatic Language . 9
1.8 Qbrt Bytecode: Interface Between Code & Execution . 10
1.9 The J Programming Language . 11
1.10 Enso: Composing DSL Interpreters, Languages, & Aspects . 12

2 Thursday 13
2.1 Tracking MMs of Ganks in Near Real Time . 13
2.2 Chrome Security Special Sauce . 14
2.3 Functional Reactive Programming in Elm . 15
2.4 Xiki . 16

i

ii

Strange Loop Notes, Release

Strange Loop is a conference held in St Louis, Missouri. Strange Loop 2013 is Thursday and /friday/index,
September 19 and 20. Wednesday, Sepetember 18 is the pre-conference Emerging Languages Camp.

These are Nathan Yergler’s notes from Strange Loop 2013 and the Emerging Languages Camp. You can find the
ReStructured Text source for these notes in the git repository.

Contents 1

https://thestrangeloop.com/
https://github.com/nyergler/strange-loop-2013

Strange Loop Notes, Release

2 Contents

CHAPTER 1

Emerging Languages Camp

Date 2013-09-18

Location Union Station DoubleTree, St Louis, Missouri

1.1 Gershwin: Stack-based Concatenative Clojure

Authors Daniel Gregoire

Time 9:00 - 9:30

Session https://thestrangeloop.com/sessions/gershwin-stack-based-concatenative-clojure

Link https://github.com/gershwin/gershwin

Slides

Why Gershwin? What’s wrong with Clojure? That’s the first question a language designed gets asked. Because there’s
an itch. He wanted to get a deeper understanding of Clojure, and explore stack based languages.

Gerwshin is not emergent, but Clojure is (and has emergerd), and Gershwin is an extension of Clojure. So what does
it mean for a language to be extensible, and how far can we take that until we break it? I sdon’t think Gershwin breaks
Clojure, but you (theaudience) be the judge.

When studiying a language as humands, the first thing we learn (usually) is phonestics. In programming languages,
the syntax is the first thing we look at.

[brief overview of Clojure syntax]

So what does Gershwin add to Clojure? Gershwin is an addative extension to Clojure; it can compile anythign that
Clojure 1.6 can compile.

First, it’s stack based, so no parens are needed to call/invoke.

Functionas are called “words”, and ”:” is used to define words.

Anonymous functions are called quotations

Use #[] to write quotations (reader macro)

Words and Clojure fucntions can share names in the same namespace, since they behave differently

Gershwin adds a couple of additions to the LispReader– reader macros for quotations, etc. Also, parsing ”:” followed
by a space. Additionally, it modifies the pubshback reader buffer.

The next thing you usually learn in spoken languaegs are words/phrases; in progrmaming, it’s primatives: functions,
types, etc.

3

https://thestrangeloop.com/sessions/gershwin-stack-based-concatenative-clojure
https://github.com/gershwin/gershwin

Strange Loop Notes, Release

Gershin words:

2 2 +
;; 4

:foo {:foo "bar"} get
;; "bar"

:foo {:foo "bar"} apply
;; "bar"

{:foo "bar"} :foo apply
;; "bar

[:a 1 :b 2] hash-map*
;; {:a 1, :b 2}

[1 2 3 4] #[2 *] map
;; (2 4 6 8) -- this uses a quotation (function)

Most concatenative languges don’t include variables: they’re point free. But they’re useful, so Gershwin exposes
Clojure’s variables

(def my-data (atom 42))
:times-2 [n -- n] 2 * .

4 times-2
;=> 8

In the times-2 declaration, the “[n – n]” tells Gershwin what to expect this quotation to do to the stack.

So when you’re wriitng Gershwin, it’s usually just backwards from Clojure.

Conditionals in Gershwin:

answer 42 =
#[:ok]
#[:bad] if

The “=” operator puts the boolean on the stack. The next two lines (“ok”, “bad”) put two quotations on the stack, and
then the if word takes a boolean and two quotations off the stack. This implies that “if” isn’t special – it’s just another
quotation. This is one of the exciting things about stack based langauges.

Gershwin adds a couple of extensions to the Clojure compiler.

gershwin.main is the entry point for REPL, loading files. The REPL prints the stack instead of the return values.

clojure.lang.Compiler has a few changes. Compiler.load() takes one exta argument, to indicate whether it’s in clojure
mode or gershwin mode. When Gershwin encouters parenthesis, it assumes you’re intermixing Clojure.

When it comes to evaluation, it’s clojure function-turtles all the way down: words wrap to invoke, not words wrap to
conf onto stack.

The Stack uses a Clojure Vector under teh converes. It’s stored as a dynamic var in gershwin.core namespace. This
means you can rebind it and ensure that you have, for example, one stack per thread.

Why a stack based approach?

Functions ar enever explicitly passed arguments: it’s data data data word data data word. This means that it’s an
implicit stack, maintained by the language (WAT?). But this means that there are levels of succinctness you can
achieve. This is enabled through “vigorous factoring of words in to smaller words”. Stack manipulation primitves
signal the need for factoring, because they’re dififcult to reason about.

4 Chapter 1. Emerging Languages Camp

Strange Loop Notes, Release

Gershwin providese four dataflow combinators

Preserving combinators tempoaraily hides values from the stack: dip and keep.

Cleave combinators

user => 2 3{ 2 *] #[3 *] bi
--- Data Stack:
4
6

So bi (and tri) allow you to apply multiple quotations to to elements on the stack.

Spread combinators

Apply combinators

bi&, tri&

These combinators are brought from Factor_.

So when would you use Gershwin? Gershwin (and other stack based languages) are a lot like the arrow macro in
Clojure. In cases like that Gershwin can be very effective.

Clojure is a hosted langauge, which means that you can easily apply your existing knowledge of the JVM or CLR
to Clojure. And it’s easy to grow and extend: core.async, core.logic, and core.typed are all extensions, along with
cascalog and Gershwin.

“If your programming language isn’t a tool, then you’re the tool”. – Michael Fogus

1.2 Daimio: a language for sharing

Authors dann toliver

Time 9:40 - 10:10

Session https://thestrangeloop.com/sessions/daimio-a-language-for-sharing

Link http://daimio.org

Slides

“Make your applications programmable”

As we increasingly use web applications for everything – bug tracking, etc – it’s becoming more obvious when we
don’t use them. Like code editing, because your editor is probably totally customized and tricked out. For those of
us building web applications, people are probably using them in ways that you didn’t intend. It’d be great if we could
allow our users to extend and customize our applications, and share that, without exposing ourselves to rampant attack,
or endangering our users.

So what would an appropriate language look like? It’d have editable interfaces, extensible functionality, and express-
ible interaction.

When it comes to interfaces, we’ll need a templating language that allows for some sort of code embedding (to avoid
C-style printf, if nothing else), some control structures, and most importantly, is side effect free.

We’d need a composition and coordination language, as well – the ability to apply primative operations to one another
to build up larger functionality. [Presenter strongly prefers data flow languages for things like this.] When it comes to
coordination, we need modularity, with some limits on the how entwined and tightly couple components can become.

So what might it look like if we combined a few of these features, what might that look like?

1.2. Daimio: a language for sharing 5

https://thestrangeloop.com/sessions/daimio-a-language-for-sharing
http://daimio.org

Strange Loop Notes, Release

Well it’s a data flow language, so that means pipes. And it uses a directed acyclic graph, which means you need a way
to do static single assignment.

{ 3 | add 5 } ==> 8

For expressible interactions, we need some coordination language model. We’re interested in building graphical
interfaces, so we can assume that coordination is happening on a single machine, which removes a bunch of possible
problems (network variability, etc).

State is stored in “spaces”, and spaces can have subspaces [I think?]. So where does code live in this model, since it
co-exists with data? Code has a thin wrapper called a station, and can be connected to other spaces.

To avoid side effects, we push all of the I/O to “ports” on the outermost space.

[Code examples]

1.3 Babel: An Untyped, Stack-based HLL

Authors Clayton Bauman

Time 10:20-10:50

Session https://thestrangeloop.com/sessions/babel-an-untyped-stack-based-hll

Link http://babelscript.net

Slides

Going to explain how it works, and demonstrate it using the reference implementaiton. Began devleoping babel around
2006. In 2005 it was revealed that the NSA was spying on US citizens. The security flaws were made possible in some
cases by backdoors inserted by NSA, et al. Today the emphasis of ownership is on those of the designer. Babel
attempts to shift that to the rights of the user and the system owner.

Babel 1.0 will use public key crypto to verify that code is allowed – by the user – to execute. This means that the user
decides who they trust to write software.

Babel is a stack based, untyped langauge. It’s not a “pure” language: some (many?) actions can have side effects.
Although Babel is untyped, it does support tags, which allow you to assign string descriptors to pointers.

The core babel data structure is called the bstruct. This is the underlying container for all data in Babel. Strings,
integers, unsigned, floats, are all stored as values in lfaf-arryas. No pointers can be stored ina leaf-array.

Ordeiinary pointers are stored in nitnerior-arrays: overy points in an interior-array must be initialized and valid. No
values can be stored in an interior array.

[overview of in memory data structure for Babel]

Code is data in Babel.

[example]

And the following are equivalent:

(val "Hello")
(val 0x6c6c6548 0x6f 0xffffffff00)

The virtual machine, the BVM, is also a bstruct. There are three stacks: the down stack (dstack), up stack (ustack),
and managed stack (rstack). Code-list is a linked list containing data operands, etc.

The Bable interpreter uses a small boostrap, which is also written in Bable. This bootstrap loads and begins execution
of your program. The reference implementation is written in C, with a Perl front end parser (based on sparse.pl). In the
future it will have a built in parser instead of using Perl, and include a wide selection of crypto primitives (libtomcrypt).

6 Chapter 1. Emerging Languages Camp

https://thestrangeloop.com/sessions/babel-an-untyped-stack-based-hll
http://babelscript.net

Strange Loop Notes, Release

[Lots of time spent discussing stack and memory internals of Babel. This would be great for situations where I thought
I might want to use Babel and wanted to develop a deep understanding. Unfortunately not at all clear to me when I
might want to use Babel at the moment.]

1.4 Noether: Symmetry in Prog Lang Design

Authors Daira Hopwood

Time 11:00 - 11:30

Session https://thestrangeloop.com/sessions/noether-symmetry-in-programming-language-design

Link https://groups.google.com/forum/?fromgroups#!forum/noether-dev

Slides

One of the questions facing language designers is how do we expression the abstractions necessary to program gigantic
computers. Thirty years ago Djkstra warned that as computers increased 1000 fold in power, they would become too
complex to program. In reality, computing power has increased 1,000,000 fold in that time frame. But the languages
haven’t fundamentally changed to address this.

So the “software cirsis” is still here:

Programs are too large, complex, and diffiult to maintain. No one knows how to write secure, veriably correct pro-
grams.

Imposing symmetries aid reasoning abot programming. A suymmetry gives a set of possible transofmratinos that do
not change a given property. So in geometry, this tanslation is rotation and reflection. In physics it’s time and location
invariance (eg, general relativeity). In programming, language-dependent symmetries exist; for example:

• Confluence describes the symmetry of evaluation order in purely functinoal langauges.

• Renaming

• Trait flattening

But programming languages also have features/properties that interfer with symmetries. For example, side effects and
state, failure handling, and concurrency are essential features that interfer with adding symmetry. Other non-essential,
common features that interfere include dynamic binding, overloading, implicit coercion, and global state.

If we want the strongest symmetries possible for any given expressiveness, the solution is tratified languages. This
isn’t a new idea: Erlang, Oz, and Haskell all have it. Noether takes it futher.

At each level we add one or more features nad break a symmetry. Some symmetries are so useful that they should
be preserved globallhy (eg, memory safety). If you start designing the language with one level per broken symmetry,
then you can collapse levels later if you correct the brokenness [not sure i got this right]. The sublanguages at each
level don’t need to be nested, but it simplifies understanding the entire system.

Noether is an object capability language with strong symmetry properties. [Slides contain an incredible amount of
text; will try to find, read, and link.]

Noether is actually composed of a set of nested sub-languages, each of which adds additional funtionality and sym-
metry.

1.5 Nimrod: A new approach to meta programming

Authors Andreas Rumpf

Time 13:00

1.4. Noether: Symmetry in Prog Lang Design 7

https://thestrangeloop.com/sessions/noether-symmetry-in-programming-language-design
https://groups.google.com/forum/?fromgroups#!forum/noether-dev

Strange Loop Notes, Release

Session https://thestrangeloop.com/sessions/nimrod-a-new-approach-to-meta-programming

Link http://nimrod-code.org/

Slides

Agenda: Overview of Nimrod and some implementation aspects, followed by Hello World and then moving into
metaprogramming.

Nimrod is a statically typed systems programming language. It has a clean syntax and strong meta-programming
capability (for example, you can declare the not equals operator for Nimrod in Nimrod). Nimrod compiles to C, C++,
and Objective-C. Portions of it also compile to Javascript.

Nimrod provides a realtime GC with exhibits maximum pause times of 1-2 milliseconds. The compiles provides dead
code elimination, and the stdlib is designed to leverage this: for example, if you’re using parsing, it doesn’t use regular
expressions, so the regular expression portion is optimized away. (The GC can also be optimized away!)

Example:

echo "hello ", "world", 99

is rewritten to:

echo([$"hello ", $"world", $99])

echo is declared as a procedure (function), and $ (the toString operator) is applied to every argument. This type
conversion is local: only in this context are the arguments converted [not sure what else could happen?].

Nimrod’s focus is meta programming via macros. For example:

template htmlTag(Tag:expr) {.immediate.} =
proc tag(): string = "<" & astToStr(tag) & ">"

htmlTag(br)
htmlTag(html)

echo br()
echo html()

Produces:

<html>

Note that calls to htmlTag use the parameter name to create a procedure of the same name.

[Shows additional examples]

Macros can also be used to implement DSLs. [shows example of an HTML templating DSL; looks pretty slick]
Macros support rewriting as well as simple expansion.

[Additional in depth metaprogramming examples.]

[Shows examples of % and optFormat]

Those look a lot alike, what about reducing duplication using templates? Yup, Nimrod does that.

1.6 Dao Programming Language for Scripting and Computing

Authors Limin Fu

Time 13:40

8 Chapter 1. Emerging Languages Camp

https://thestrangeloop.com/sessions/nimrod-a-new-approach-to-meta-programming
http://nimrod-code.org/

Strange Loop Notes, Release

Session https://thestrangeloop.com/sessions/dao-programming-language-for-scripting-and-computing

Link http://daovm.net/

Slides

Dao is a language Fu developed in his spare time. It was initially motivated by frustration with Perl. That frustration
made him curious about language design and implementation. Around the same time he wanted a better language
for bioinformatics, and Dao was a way to get that. Since then the goal has evolved to providing a general purpose
language with some advanced features in a small runtime. Dao emphasizes consistent and reasonable syntax, simple
interface for extending and embedding, good numeric efficiency, and good support for multiple cores.

Dao supports:

• optional type annotations, with type inference and static type checking,

• BNF-like syntax macros for adding new language features,

• and anonymous functions,

among others (slides list more complete features).

tup = (123, ’abc’)
tup : tuple<int, string> = (123, ’abc’)

Because Dao does some type inferencing and compile time checks, it does some interesting things at compile time:
if you call a function in two places, once with a string and once with an int, you get two specialized copies in the
copmiled output: one for ints and one for strings.

[Demonstrates lots of Dao features, including concurrency primitives.]

The Dao JIT backend is based on LLVM. It only supports a subset of the Dao VM instructions, so some programs
won’t be sped up with the current implementation.

ClangDao provides an easy way to bind C/C++ libraries into Clang.

1.7 Axiomatic Language

Authors Walter Wilson

Time 14:15

Session https://thestrangeloop.com/sessions/axiomatic-language

Link http://axiomaticlanguage.org/

Slides

Axiomatic has four goals:

• Pure specification – what, not how

• Minimal but extensible – as small as possible

• Metalanguage – able to imitate other languages

• Beautiful

Speificiation by Enumeration: a program can be specific by an infinite set of symbolic epxressions that enumerate
all possible inputs or sequences of inputs along with the corresponding outputs. Additionally, you could create a
syntax for describing programs in terms of the input and output files. But what about interactive programs? This
is a specialization of the previous case: instead of a single input specification and a single output specification, the
enumeration interleaves input and output, again exhausitvely.

1.7. Axiomatic Language 9

https://thestrangeloop.com/sessions/dao-programming-language-for-scripting-and-computing
http://daovm.net/
https://thestrangeloop.com/sessions/axiomatic-language
http://axiomaticlanguage.org/

Strange Loop Notes, Release

If you accept the premise that this enumeration is a specification, then what you need is a way to formally describe
the enumerations. Axiomatic syntax supports atoms, expressions, strings, and sequences. The axiom construct is a
conclusion (output) and some set of conditions. In the core language, the program generates expressions if all the
conditions of an axiom instances are valid (true).

1.8 Qbrt Bytecode: Interface Between Code & Execution

Authors Matthew Graham @lapsu

Time 14:45

Session https://thestrangeloop.com/sessions/qbrt-bytecode-interface-between-code-and-execution

Link http://github.com/mdg/qbrt

Slides

Software enginer at Etsy (personal project, not Etsy project).

Bytecode assembly language and virtual machine: make writing langauges easier, make it possible to recombine
quality features, and provide novel error handling.

Qbrt was sort of an accident. Computers got faster for a long time, and now they’re not getting faster: they getting
concurrent. The programming languages of today were designed for hardware that was going to keep getting faster.

Speaker invented a language called Jaz, and realized testing and development would be easier if the language had its
own assembly language. So Qbrt was born.

Qbrt sits between your language and the OS, much like the JVM. Many languages could target the same bytecode
assembly language, which could make implementing DSLs, template languages, etc more straight-forward.

Priorities for the Qbrt VM are concurrency, interoperability, and low memory footprint. Straight line performance was
not a priority.

Priorities for the Qbrt language was:

• accessibility

• wriable for a computer

• readable for client language designer

• debugabble in client lange

It does not need to be readable or writable by the client language user. They may know it’s there, but they shouldn’t
need to know about what’s actually going on.

There is precendent for this appraoch: Parrot, JVM, and Erlang runtime (via Elixer) have gone before.

Qbrt is register based. It supports runtime polymorphism, static type information, inline async i/o, and pattern match-
ing.

[Hello, world demo, and again in UTF-8]

1.8.1 Concurrency

Qbrt supports concurrency via processes and forks. Qbrt models CPUs as Workers, which handle scheduling, etc.

Each worker has multiple processes. Qbrt’s processes are inspired by Erlang processes: each has a new call stack, and
they communicate via message passing.

10 Chapter 1. Emerging Languages Camp

https://thestrangeloop.com/sessions/qbrt-bytecode-interface-between-code-and-execution
http://github.com/mdg/qbrt

Strange Loop Notes, Release

Qbrt forks are a call tree, and communicate via promises. A function can not return until all of its promises are
resolved.

1.8.2 Failure

Qbrt handles failure via exceptions or error values.

Exception handling isn’t great: if you have an exception handler, it’s not always clear which thing failed, and the result
ends up in one of two places:

try:
a = foo()
b = bar()

except IOError as e:
do something

The result of foo winds up in a or e. And if e is set, which callable did the value originate with?

Error values have their own problems. How many C bugs are the result of not checking for a negative (error) return
value?

Qbrt has static type information; functions declare their type. But in Qbrt everything can also return a failure type.
This is implicit, you do not need to declare it. In the Qbrt code, you can check for failure using special instructions.
Or you can ignore it, and Qbrt will check for you. So if you try to access a value without error checking, Qbrt will
check and throw the error up the stack for you.

1.8.3 Multiple Dispatch

Multi dispatch in Qbrt is more like multi parameter type classes. Qbrt protocols are similar to Clojure protocols or
Haskell classes.

[Presenter went quickly, running out of time.]

1.8.4 What’s Next for Qbrt?

Runtime needs languages to be successful. Write a language :).

1.9 The J Programming Language

Authors Tracy Harms @kaleidic

Time 15:50 - 16:20

Session https://thestrangeloop.com/sessions/the-j-programming-language

Link http://www.jsoftware.com/

Slides

Tracy didn’t create J, but he’s here to talk about it. J is the product of Kenneth E. Iverson adn Roger Hui. J was first
released in 1990.

What sort of problem does J fit well? Subtraction. Specifically image subtraction: removing a shadow from an image.

[Shows the source, fits on one slide.]

1.9. The J Programming Language 11

https://thestrangeloop.com/sessions/the-j-programming-language
http://www.jsoftware.com/

Strange Loop Notes, Release

When reading a J program, it’s often best to start at the end: that’s the punch line. And then start back at the top to see
how it gets there.

[Walks through image subtraction program.]

J favors an interactive approach, assuming the “operator” is at the console.

In J, data is called a noun, and a noun is a collection. Nouns are regular. Scalar data is the exception, rather than the
rule. A verb (function) applies across

J has had over fifty years of refinement, starting on chalkboards in 1957 with Iverson at Harvard. In 1962, there was a
book published on it: “A Programming Language”. A paper followed in 1964, desribing the System/360 architecture.
The interpreter, APL, was released in 1966: before then verification and changes happened manually, with pencil and
paper.

Even though APL was critically important, Iverson had a sense that it could have been better had he known more
starting out. In the 1980’s he released its successor, J.

[Shows some J interaction.]

In J you can factor verbs that take common nouns out into a verb train. If you give that train a name, you’ve defined a
new verb.

average =: +/ % #

allows you to do:

average MyList

And is equivalent to:

(+/MyList) % (#MyList)

(The sum of the list divided by the number of elements.)

Verb Trains are higher order functions, denoted by placing verbs adjacent to one another.

[Shows numeronym example.]

1.10 Enso: Composing DSL Interpreters, Languages, & Aspects

Authors William Cook

Time 16:35

Session https://thestrangeloop.com/sessions/enso-composing-dsl-interpreters-languages-aspects

Link

Slides

Been working on Enso intermittently for 10 years, trying to develop a new style of programming. Our typical approach
is to gather requirements, write code, and inspect the behavior of the code. But there’s also this other thing going on:
the programmer is figuring out what strategy they should use to solve the problem. That strategy becomes a pervasive
part of the programmer’s mindset, and influences all of the code they write.

12 Chapter 1. Emerging Languages Camp

https://thestrangeloop.com/sessions/enso-composing-dsl-interpreters-languages-aspects

CHAPTER 2

Thursday

2.1 Tracking MMs of Ganks in Near Real Time

Authors Garrett Eardly

Time 9:50

Session

Link

Slides

Working on distributed backend system for the past two years. For the past 18 months working on stats platform for
League of Legends.

Riot Games aspires to be a player focused game company: this means ensuring that players can continue to play,
without down time. League of Legends provides lots of post game stats for users.

The initial stats system (2009) was built with a short development window, and consciously incured technical debt. The
system used a single database (MySQL) with a caching layer. There was a low concurrency target, and the database
was a single point of failure for the entire game. When database upgrades needed to happen, the game was down, as
well.

An interim step (2012) was sharding the database to achieve some horizontal scalability. At this time they were treating
MySQL largely like a key-value store: in order to avoid expensive schema changes, blobs of unstructured data were
stored as values (ie, JSON blobs). Eight different regions worldwide to support players, and the deployments are
non-homogenous.

Today they’re supporting 30+ regions, with more cache and faster databases (SSD, etc), but fundamentally still the
same problems. Additionally, new data heavy features are extremely difficult to develop.

The challenges they needed to solve were:

• remove single point of failure

• remove need for downtime during software upgrades

• allow for horizontal scaling.

• enable development of data heavy features

The new system utilizes Riak as its datastore.

There is not single point of failure. Rolling upgrades are possible (Basho has committed to compatibility between
versions). Additionally, Riak supports hot rebalancing when you add a new node.

13

Strange Loop Notes, Release

Riak works differently than their caching layer over MySQL did. So what does GET/PUT look like? The request
arrives at any one of the nodes, and is delegated to the nodes that have the data, and when the threshold number
respond, the response is returned. This allows for tunable eventual consistency. [I wonder how this differs from
Cassandra?]

Challenges:

• Conflict resolution

• Idempotent operations: When processing a game repeatedly, you don’t want to corrupt the stats.

• Balancing # of Gets vs Object size

In order to deal with these, they developed some data patterns. Single game stats are the simplest case: the last write
always wins, and encapsulates the stats for the entire game. There are no modifications after write.

A player’s match history is more complicatied: you have 1 player and N games. The matchlist is stored as a single
document, so the pattern is read-update-write [looks like adding a key to a dict]. In this case the set of games only ever
increases, so when there’s a conflict, you simply take the union of the two conflicting documents.

Aggregate stats and counters are more complicated: they’re sets of counters mutating as players play the game. For
example, incrementing the number of kills or deaths over the lifetime of play. In that case, if there are conflicting
siblings, you can’t simply union. You can store a sequence of deltas with the object, which allows you to use union to
resolve concurrent write conflicts. Doing that naively, however, can lead to very large object sizes, which slows down
performance considerably. The solution is to store a rolled-up, truncated value, along with a set of “recent games”
deltas. This isn’t a perfect solution: it’s still susceptible to network partitions during aggregation, but it’s something
they’ve decided is managable.

The system is currently live but dark, not deployed worldwide yet. They are able to begin doing gameplay analysis
using the data at this point.

2.2 Chrome Security Special Sauce

Authors Parisa

Time 10:40

Session

Link

Slides

“A few of the key ingredients in teh Chrome browser tha help keep you safe on the web.”

Disclaimers:

• I’m not a developer

• This talk will not make you a better developer

• This is a new talk :)

Working on Chrome’s Security engineering team; originally at Google as an engineer working to break web applica-
tions. Chrome was built with three core principles: speed, simplicity, and security. So Security in Chrome is a core
focus of the team.

The security team is about 20 full engineers. They are responsible for designing and implementing security features,
finding security bugs, and reponding to vulnerabilities.

14 Chapter 2. Thursday

Strange Loop Notes, Release

Browser security is important, and its role is growing. Internet crime continues to rise: attackers have easy, remote
access to systems, and lots of users [targets]. Browser software is particularly hard to secure: huge user base (for
something like Chrome), lots of untrusted content, and it’s very complex.

2.2.1 Browser Exploits

Browser exploits are malicious code that aims to acheive remote code execution on a victim’s computer by exploiting
some bug in the browsre itself. These may target plugins like Flash, PDF, and Java, not just the browser proper. The
Chrome team works to thwart these attacks by finding and fixing bugs, and acknowledging the reality of the situation.

The Chrome team uses Fuzzing to find bugs in the browser itself. Fuzzing involves throwing random(-ish) data at a
program in an attempt to see if it will crash. The most basic fuzzer could just read from /dev/urandom and pipe to
the program, but it can by optimized. For example, figuring out how to cover more LOCs, fuzzing over multiple cores,
and ensuring you can reproduce the bug. Additionally, while you could just throw random data at the program, that’s
probably going to fail way too early to be interesting. Starting from a valid input (ie, a correct protocol request) and
then varying parameters might be more interesting.

Google also pays security researches a bounty for discovering and responsibly reporting bugs. The bounty program
runs over time. Google has also sponsored rewards for proof of concept exploits: running untrusted code by just
opening a web page.

In addition to fixing bugs, it’s critical for users to actually download and install updates.

[Shows graph of version deployment over time; obvious that users are using the auto-update feature.]

Bugs will always exist, so it’s important to architect the software with Defense In Depth. Chrome was the first browser
to use process sandboxing for individual pages/components. This means that an exploited bug in one area doesn’t lead
to a compromise of the entire browser.

Chrome sandboxes plugins like Flash and its PDF Reader, but not all plugins can be sandboxed. To address this
potential vulnerability – as well as the use of outdated, potentially vulnerable plugins – Chrome has different plugin
blocking features (click to run, etc).

2.2.2 Phising & Malware Sites

Safe Browsing warns users when they’re visiting a page that Google believes to contain malware or be phishing.

2.3 Functional Reactive Programming in Elm

Authors Evan Czaplicki

Time 13:00

Session

Link

Slides

Functional graphics

How do we make graphics simple and declarative? Graphics meaning text and links, layout, or free-form graphics.
So the question was how do you make text and links flow correctly, how do you design something for layout (vertical
centering, etc), and finally how do you draw something completely irregular? And how do you do it in a functional
manner?

Quick example:

2.3. Functional Reactive Programming in Elm 15

Strange Loop Notes, Release

words : Element
words = [markdown|

Hello StrangeLoop!

Thanks for coming :)
|]

img = image 200 200 "/yogi.jpg"

main : Element
main = asText 42
main = words
main = flow down [words, img]

So Elm lets you declare elements and then begin to flow them in a simple manner.

Elm also has special elements for free form drawing:

main = collage 200 200
[fillled blue (ngon 5 50)
, outlined (dashed red) (circle 70)
]

That’s all well and good: it’s declarative and it’s functional, but it’s just static.

But what if values changed over time? Turns out others had asked this question (“Functional Reactive Animation”,
Elliott and Hudak, 1997).

Elements are things that are in the scene.

Signals are values that change over time, which increment in discrete units. So the mouse position isn’t just a pair of
integers, it’s a signal that reports how it changes.

The lift function takes a signal and applies a function to it’s value as it changes. But lift only knows about the
present: it doesn’t remember what happened in the past. You can imagine that’s problematic if you’re trying to handle
text input.

2.4 Xiki

Authors Craig Muth

Time 15:00

Session

Link http://xiki.org

Slides

[Pre-show music makes me feel hostile towards presenter.]

Xiki is a langauge for creating UI languages. Muth has been involved in Xiki for 10 years. Muth would argue that
there aren’t really simple ways to create user interfaces, and there should be. These just aren’t interfaces for your
users, but for yourself, as well.

Xiki doesn’t try to solve all UI problems, but focuses on a single problem: nested menus. Many user interfaces consist
of vast lists of choices.

Xiki consists of a web server, a xiki shell command, and editor plugin[s?].

16 Chapter 2. Thursday

http://xiki.org

Strange Loop Notes, Release

When we start thinking about new interfaces, a lot of times we start with an indented list of items. Xiki uses that sort
of indented list as it’s basic data structure:

book flight/
one way/
round trip/

check in/
flight status/

[Shows demo of Xiki web server reading a file and generating a mobile UI on the iPhone simulator.]

Any item that ends with a / is a menu item. Lines that don’t end in a slash are just plain text. You can also embed
Ruby code for simple dynamic generation.

The built-in web server allows you to also created new items through the browser.

Xiki provides a command line interface, and generates a desktop GUI, too. I still don’t know why I’d use Xiki.

[Demonstrates using the Emacs editor plugin to pipe things back and forth with the Xiki command line.]

Lots of capabilities for Xiki; Muth is obviously very well versed in using it.

2.4. Xiki 17

	Emerging Languages Camp
	Gershwin: Stack-based Concatenative Clojure
	Daimio: a language for sharing
	Babel: An Untyped, Stack-based HLL
	Noether: Symmetry in Prog Lang Design
	Nimrod: A new approach to meta programming
	Dao Programming Language for Scripting and Computing
	Axiomatic Language
	Qbrt Bytecode: Interface Between Code & Execution
	The J Programming Language
	Enso: Composing DSL Interpreters, Languages, & Aspects

	Thursday
	Tracking MMs of Ganks in Near Real Time
	Chrome Security Special Sauce
	Functional Reactive Programming in Elm
	Xiki

