

 Navigation

 	
 index

 	
 next |

 	Strange Loop 2013 Notes

Strange Loop 2013

Strange Loop [https://thestrangeloop.com/] is a conference held in St Louis, Missouri. Strange
Loop 2013 is Thursday and Friday,
September 19 and 20. Wednesday, Sepetember 18 is the pre-conference
Emerging Languages Camp.

These are Nathan Yergler’s notes from Strange Loop 2013 and the
Emerging Languages Camp. You can find the ReStructured Text source for
these notes in the git repository [https://github.com/nyergler/strange-loop-2013].

	Emerging Languages Camp
	Gershwin: Stack-based Concatenative Clojure

	Daimio: a language for sharing

	Babel: An Untyped, Stack-based HLL

	Noether: Symmetry in Prog Lang Design

	Nimrod: A new approach to meta programming

	Dao Programming Language for Scripting and Computing

	Axiomatic Language

	Qbrt Bytecode: Interface Between Code & Execution

	The J Programming Language

	Enso: Composing DSL Interpreters, Languages, & Aspects

	Thursday
	Tracking MMs of Ganks in Near Real Time

	Chrome Security Special Sauce

	Functional Reactive Programming in Elm

	Xiki

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

Emerging Languages Camp

	Date:	2013-09-18

	Location:	Union Station DoubleTree, St Louis, Missouri

	Gershwin: Stack-based Concatenative Clojure

	Daimio: a language for sharing

	Babel: An Untyped, Stack-based HLL

	Noether: Symmetry in Prog Lang Design

	Nimrod: A new approach to meta programming

	Dao Programming Language for Scripting and Computing

	Axiomatic Language

	Qbrt Bytecode: Interface Between Code & Execution

	The J Programming Language

	Enso: Composing DSL Interpreters, Languages, & Aspects

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Emerging Languages Camp

Gershwin: Stack-based Concatenative Clojure

	Authors:	Daniel Gregoire

	Time:	9:00 - 9:30

	Session:	https://thestrangeloop.com/sessions/gershwin-stack-based-concatenative-clojure

	Link:	https://github.com/gershwin/gershwin

	Slides:	

Why Gershwin? What’s wrong with Clojure? That’s the first question a
language designed gets asked. Because there’s an itch. He wanted to
get a deeper understanding of Clojure, and explore stack based
languages.

Gerwshin is not emergent, but Clojure is (and has emergerd), and
Gershwin is an extension of Clojure. So what does it mean for a
language to be extensible, and how far can we take that until we break
it? I sdon’t think Gershwin breaks Clojure, but you (theaudience) be
the judge.

When studiying a language as humands, the first thing we learn
(usually) is phonestics. In programming languages, the syntax is the
first thing we look at.

[brief overview of Clojure syntax]

So what does Gershwin add to Clojure? Gershwin is an addative
extension to Clojure; it can compile anythign that Clojure 1.6 can
compile.

First, it’s stack based, so no parens are needed to call/invoke.

Functionas are called “words”, and ”:” is used to define words.

Anonymous functions are called quotations

Use #[] to write quotations (reader macro)

Words and Clojure fucntions can share names in the same namespace,
since they behave differently

Gershwin adds a couple of additions to the LispReader– reader macros
for quotations, etc. Also, parsing ”:” followed by a space.
Additionally, it modifies the pubshback reader buffer.

The next thing you usually learn in spoken languaegs are
words/phrases; in progrmaming, it’s primatives: functions, types, etc.

Gershin words:

2 2 +
;; 4

:foo {:foo "bar"} get
;; "bar"

:foo {:foo "bar"} apply
;; "bar"

{:foo "bar"} :foo apply
;; "bar

[:a 1 :b 2] hash-map*
;; {:a 1, :b 2}

[1 2 3 4] #[2 *] map
;; (2 4 6 8) -- this uses a quotation (function)

Most concatenative languges don’t include variables: they’re point
free. But they’re useful, so Gershwin exposes Clojure’s variables

(def my-data (atom 42))
:times-2 [n -- n] 2 * .

4 times-2
;=> 8

In the times-2 declaration, the “[n – n]” tells Gershwin what to expect this
quotation to do to the stack.

So when you’re wriitng Gershwin, it’s usually just backwards from Clojure.

Conditionals in Gershwin:

answer 42 =
#[:ok]
#[:bad] if

The “=” operator puts the boolean on the stack. The next two lines
(“ok”, “bad”) put two quotations on the stack, and then the if word
takes a boolean and two quotations off the stack. This implies that
“if” isn’t special – it’s just another quotation. This is one of
the exciting things about stack based langauges.

Gershwin adds a couple of extensions to the Clojure compiler.

gershwin.main is the entry point for REPL, loading files. The REPL
prints the stack instead of the return values.

clojure.lang.Compiler has a few changes. Compiler.load() takes one
exta argument, to indicate whether it’s in clojure mode or gershwin
mode. When Gershwin encouters parenthesis, it assumes you’re intermixing Clojure.

When it comes to evaluation, it’s clojure function-turtles all the way
down: words wrap to invoke, not words wrap to conf onto stack.

The Stack uses a Clojure Vector under teh converes. It’s stored as a
dynamic var in gershwin.core namespace. This means you can rebind it
and ensure that you have, for example, one stack per thread.

Why a stack based approach?

Functions ar enever explicitly passed arguments: it’s data data data
word data data word. This means that it’s an implicit stack,
maintained by the language (WAT?). But this means that there are
levels of succinctness you can achieve. This is enabled through
“vigorous factoring of words in to smaller words”. Stack manipulation
primitves signal the need for factoring, because they’re dififcult to
reason about.

Gershwin providese four dataflow combinators

Preserving combinators tempoaraily hides values from the stack: dip
and keep.

Cleave combinators

user => 2 3{ 2 *] #[3 *] bi
--- Data Stack:
4
6

So bi (and tri) allow you to apply multiple quotations to to elements
on the stack.

Spread combinators

Apply combinators

bi&, tri&

These combinators are brought from Factor_.

So when would you use Gershwin? Gershwin (and other stack based
languages) are a lot like the arrow macro in Clojure. In cases like
that Gershwin can be very effective.

Clojure is a hosted langauge, which means that you can easily apply
your existing knowledge of the JVM or CLR to Clojure. And it’s easy to
grow and extend: core.async, core.logic, and core.typed are all
extensions, along with cascalog and Gershwin.

“If your programming language isn’t a tool, then you’re the tool”.
– Michael Fogus

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Emerging Languages Camp

Daimio: a language for sharing

	Authors:	dann toliver

	Time:	9:40 - 10:10

	Session:	https://thestrangeloop.com/sessions/daimio-a-language-for-sharing

	Link:	http://daimio.org

	Slides:	

“Make your applications programmable”

As we increasingly use web applications for everything – bug
tracking, etc – it’s becoming more obvious when we don’t use them.
Like code editing, because your editor is probably totally customized
and tricked out. For those of us building web applications, people are
probably using them in ways that you didn’t intend. It’d be great if
we could allow our users to extend and customize our applications, and
share that, without exposing ourselves to rampant attack, or
endangering our users.

So what would an appropriate language look like? It’d have editable
interfaces, extensible functionality, and expressible interaction.

When it comes to interfaces, we’ll need a templating language that
allows for some sort of code embedding (to avoid C-style printf, if
nothing else), some control structures, and most importantly, is side
effect free.

We’d need a composition and coordination language, as well – the
ability to apply primative operations to one another to build up
larger functionality. [Presenter strongly prefers data flow languages
for things like this.] When it comes to coordination, we need
modularity, with some limits on the how entwined and tightly couple
components can become.

So what might it look like if we combined a few of these features,
what might that look like?

Well it’s a data flow language, so that means pipes. And it uses a
directed acyclic graph, which means you need a way to do static single
assignment.

{ 3 | add 5 } ==> 8

For expressible interactions, we need some coordination language
model. We’re interested in building graphical interfaces, so we can
assume that coordination is happening on a single machine, which
removes a bunch of possible problems (network variability, etc).

State is stored in “spaces”, and spaces can have subspaces [I think?].
So where does code live in this model, since it co-exists with data?
Code has a thin wrapper called a station, and can be connected to
other spaces.

To avoid side effects, we push all of the I/O to “ports” on the
outermost space.

[Code examples]

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Emerging Languages Camp

Babel: An Untyped, Stack-based HLL

	Authors:	Clayton Bauman

	Time:	10:20-10:50

	Session:	https://thestrangeloop.com/sessions/babel-an-untyped-stack-based-hll

	Link:	http://babelscript.net

	Slides:	

Going to explain how it works, and demonstrate it using the reference
implementaiton. Began devleoping babel around 2006. In 2005 it was
revealed that the NSA was spying on US citizens. The security flaws
were made possible in some cases by backdoors inserted by NSA, et al.
Today the emphasis of ownership is on those of the designer. Babel
attempts to shift that to the rights of the user and the system owner.

Babel 1.0 will use public key crypto to verify that code is allowed –
by the user – to execute. This means that the user decides who they
trust to write software.

Babel is a stack based, untyped langauge. It’s not a “pure” language:
some (many?) actions can have side effects. Although Babel is untyped,
it does support tags, which allow you to assign string descriptors to
pointers.

The core babel data structure is called the bstruct. This is the
underlying container for all data in Babel. Strings, integers,
unsigned, floats, are all stored as values in lfaf-arryas. No pointers
can be stored ina leaf-array.

Ordeiinary pointers are stored in nitnerior-arrays: overy points in an
interior-array must be initialized and valid. No values can be stored
in an interior array.

[overview of in memory data structure for Babel]

Code is data in Babel.

[example]

And the following are equivalent:

(val "Hello")
(val 0x6c6c6548 0x6f 0xffffffff00)

The virtual machine, the BVM, is also a bstruct. There are three
stacks: the down stack (dstack), up stack (ustack), and managed stack
(rstack). Code-list is a linked list containing data operands, etc.

The Bable interpreter uses a small boostrap, which is also written in
Bable. This bootstrap loads and begins execution of your program. The
reference implementation is written in C, with a Perl front end
parser (based on sparse.pl). In the future it will have a built in
parser instead of using Perl, and include a wide selection of crypto
primitives (libtomcrypt).

[Lots of time spent discussing stack and memory internals of Babel.
This would be great for situations where I thought I might want to use
Babel and wanted to develop a deep understanding. Unfortunately not at
all clear to me when I might want to use Babel at the moment.]

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Emerging Languages Camp

Noether: Symmetry in Prog Lang Design

	Authors:	Daira Hopwood

	Time:	11:00 - 11:30

	Session:	https://thestrangeloop.com/sessions/noether-symmetry-in-programming-language-design

	Link:	https://groups.google.com/forum/?fromgroups#!forum/noether-dev

	Slides:	

One of the questions facing language designers is how do we expression
the abstractions necessary to program gigantic computers. Thirty
years ago Djkstra warned that as computers increased 1000 fold in
power, they would become too complex to program. In reality, computing
power has increased 1,000,000 fold in that time frame. But the
languages haven’t fundamentally changed to address this.

So the “software cirsis” is still here:

Programs are too large, complex, and diffiult to maintain. No one
knows how to write secure, veriably correct programs.

Imposing symmetries aid reasoning abot programming. A suymmetry gives
a set of possible transofmratinos that do not change a given property.
So in geometry, this tanslation is rotation and reflection. In physics
it’s time and location invariance (eg, general relativeity). In
programming, language-dependent symmetries exist; for example:

	Confluence describes the symmetry of evaluation order in purely
functinoal langauges.

	Renaming

	Trait flattening

But programming languages also have features/properties that interfer
with symmetries. For example, side effects and state, failure
handling, and concurrency are essential features that interfer with
adding symmetry. Other non-essential, common features that interfere
include dynamic binding, overloading, implicit coercion, and global
state.

If we want the strongest symmetries possible for any given
expressiveness, the solution is tratified languages. This isn’t a new
idea: Erlang, Oz, and Haskell all have it. Noether takes it futher.

At each level we add one or more features nad break a symmetry. Some
symmetries are so useful that they should be preserved globallhy (eg,
memory safety). If you start designing the language with one level per
broken symmetry, then you can collapse levels later if you correct the
brokenness [not sure i got this right]. The sublanguages at each level
don’t need to be nested, but it simplifies understanding the entire
system.

Noether is an object capability language with strong symmetry
properties. [Slides contain an incredible amount of text; will try to
find, read, and link.]

Noether is actually composed of a set of nested sub-languages, each of
which adds additional funtionality and symmetry.

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Emerging Languages Camp

Nimrod: A new approach to meta programming

	Authors:	Andreas Rumpf

	Time:	13:00

	Session:	https://thestrangeloop.com/sessions/nimrod-a-new-approach-to-meta-programming

	Link:	http://nimrod-code.org/

	Slides:	

Agenda: Overview of Nimrod and some implementation aspects, followed by Hello
World and then moving into metaprogramming.

Nimrod is a statically typed systems programming language. It has a
clean syntax and strong meta-programming capability (for example, you
can declare the not equals operator for Nimrod in Nimrod). Nimrod
compiles to C, C++, and Objective-C. Portions of it also compile to
Javascript.

Nimrod provides a realtime GC with exhibits maximum pause times of 1-2
milliseconds. The compiles provides dead code elimination, and the
stdlib is designed to leverage this: for example, if you’re using
parsing, it doesn’t use regular expressions, so the regular expression
portion is optimized away. (The GC can also be optimized away!)

Example:

echo "hello ", "world", 99

is rewritten to:

echo([$"hello ", $"world", $99])

echo is declared as a procedure (function), and $ (the toString
operator) is applied to every argument. This type conversion is local:
only in this context are the arguments converted [not sure what else
could happen?].

Nimrod’s focus is meta programming via macros. For example:

template htmlTag(Tag:expr) {.immediate.} =
 proc tag(): string = "<" & astToStr(tag) & ">"

htmlTag(br)
htmlTag(html)

echo br()
echo html()

Produces:

<html>

Note that calls to htmlTag use the parameter name to create a
procedure of the same name.

[Shows additional examples]

Macros can also be used to implement DSLs. [shows example of an HTML
templating DSL; looks pretty slick] Macros support rewriting as well
as simple expansion.

[Additional in depth metaprogramming examples.]

[Shows examples of % and optFormat]

Those look a lot alike, what about reducing duplication using
templates? Yup, Nimrod does that.

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Emerging Languages Camp

Dao Programming Language for Scripting and Computing

	Authors:	Limin Fu

	Time:	13:40

	Session:	https://thestrangeloop.com/sessions/dao-programming-language-for-scripting-and-computing

	Link:	http://daovm.net/

	Slides:	

Dao is a language Fu developed in his spare time. It was initially
motivated by frustration with Perl. That frustration made him curious
about language design and implementation. Around the same time he
wanted a better language for bioinformatics, and Dao was a way to get
that. Since then the goal has evolved to providing a general purpose
language with some advanced features in a small runtime. Dao
emphasizes consistent and reasonable syntax, simple interface for
extending and embedding, good numeric efficiency, and good support for
multiple cores.

Dao supports:

	optional type annotations, with type inference and static type
checking,

	BNF-like syntax macros for adding new language features,

	and anonymous functions,

among others (slides list more complete features).

tup = (123, 'abc')
tup : tuple<int, string> = (123, 'abc')

Because Dao does some type inferencing and compile time checks, it
does some interesting things at compile time: if you call a function
in two places, once with a string and once with an int, you get two
specialized copies in the copmiled output: one for ints and one for
strings.

[Demonstrates lots of Dao features, including concurrency primitives.]

The Dao JIT backend is based on LLVM. It only supports a subset of
the Dao VM instructions, so some programs won’t be sped up with the
current implementation.

ClangDao provides an easy way to bind C/C++ libraries into Clang.

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Emerging Languages Camp

Axiomatic Language

	Authors:	Walter Wilson

	Time:	14:15

	Session:	https://thestrangeloop.com/sessions/axiomatic-language

	Link:	http://axiomaticlanguage.org/

	Slides:	

Axiomatic has four goals:

	Pure specification – what, not how

	Minimal but extensible – as small as possible

	Metalanguage – able to imitate other languages

	Beautiful

Speificiation by Enumeration: a program can be specific by an infinite
set of symbolic epxressions that enumerate all possible inputs or
sequences of inputs along with the corresponding outputs.
Additionally, you could create a syntax for describing programs in
terms of the input and output files. But what about interactive
programs? This is a specialization of the previous case: instead of a
single input specification and a single output specification, the
enumeration interleaves input and output, again exhausitvely.

If you accept the premise that this enumeration is a specification,
then what you need is a way to formally describe the enumerations.
Axiomatic syntax supports atoms, expressions, strings, and sequences.
The axiom construct is a conclusion (output) and some set of
conditions. In the core language, the program generates expressions if
all the conditions of an axiom instances are valid (true).

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Emerging Languages Camp

Qbrt Bytecode: Interface Between Code & Execution

	Authors:	Matthew Graham @lapsu

	Time:	14:45

	Session:	https://thestrangeloop.com/sessions/qbrt-bytecode-interface-between-code-and-execution

	Link:	http://github.com/mdg/qbrt

	Slides:	

Software enginer at Etsy (personal project, not Etsy project).

Bytecode assembly language and virtual machine: make writing langauges
easier, make it possible to recombine quality features, and provide
novel error handling.

Qbrt was sort of an accident. Computers got faster for a long time,
and now they’re not getting faster: they getting concurrent. The
programming languages of today were designed for hardware that was
going to keep getting faster.

Speaker invented a language called Jaz, and realized testing and
development would be easier if the language had its own assembly
language. So Qbrt was born.

Qbrt sits between your language and the OS, much like the JVM. Many
languages could target the same bytecode assembly language, which
could make implementing DSLs, template languages, etc more
straight-forward.

Priorities for the Qbrt VM are concurrency, interoperability, and low
memory footprint. Straight line performance was not a priority.

Priorities for the Qbrt language was:

	accessibility

	wriable for a computer

	readable for client language designer

	debugabble in client lange

It does not need to be readable or writable by the client language
user. They may know it’s there, but they shouldn’t need to know about
what’s actually going on.

There is precendent for this appraoch: Parrot, JVM, and Erlang runtime
(via Elixer) have gone before.

Qbrt is register based. It supports runtime polymorphism, static type
information, inline async i/o, and pattern matching.

[Hello, world demo, and again in UTF-8]

Concurrency

Qbrt supports concurrency via processes and forks. Qbrt models CPUs as
Workers, which handle scheduling, etc.

Each worker has multiple processes. Qbrt’s processes are inspired by
Erlang processes: each has a new call stack, and they communicate via
message passing.

Qbrt forks are a call tree, and communicate via promises. A function
can not return until all of its promises are resolved.

Failure

Qbrt handles failure via exceptions or error values.

Exception handling isn’t great: if you have an exception handler, it’s
not always clear which thing failed, and the result ends up in one of
two places:

try:
 a = foo()
 b = bar()
except IOError as e:
 # do something

The result of foo winds up in a or e. And if e is set,
which callable did the value originate with?

Error values have their own problems. How many C bugs are the result
of not checking for a negative (error) return value?

Qbrt has static type information; functions declare their type. But in
Qbrt everything can also return a failure type. This is implicit,
you do not need to declare it. In the Qbrt code, you can check for
failure using special instructions. Or you can ignore it, and Qbrt
will check for you. So if you try to access a value without error
checking, Qbrt will check and throw the error up the stack for you.

Multiple Dispatch

Multi dispatch in Qbrt is more like multi parameter type classes. Qbrt
protocols are similar to Clojure protocols or Haskell classes.

[Presenter went quickly, running out of time.]

What’s Next for Qbrt?

Runtime needs languages to be successful. Write a language :).

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Emerging Languages Camp

The J Programming Language

	Authors:	Tracy Harms @kaleidic

	Time:	15:50 - 16:20

	Session:	https://thestrangeloop.com/sessions/the-j-programming-language

	Link:	http://www.jsoftware.com/

	Slides:	

Tracy didn’t create J, but he’s here to talk about it. J is the
product of Kenneth E. Iverson adn Roger Hui. J was first released
in 1990.

What sort of problem does J fit well? Subtraction. Specifically image
subtraction: removing a shadow from an image.

[Shows the source, fits on one slide.]

When reading a J program, it’s often best to start at the end: that’s
the punch line. And then start back at the top to see how it gets
there.

[Walks through image subtraction program.]

J favors an interactive approach, assuming the “operator” is at the
console.

In J, data is called a noun, and a noun is a collection. Nouns are
regular. Scalar data is the exception, rather than the rule. A verb
(function) applies across

J has had over fifty years of refinement, starting on chalkboards in
1957 with Iverson at Harvard. In 1962, there was a book published on
it: “A Programming Language”. A paper followed in 1964, desribing the
System/360 architecture. The interpreter, APL, was released in 1966:
before then verification and changes happened manually, with pencil
and paper.

Even though APL was critically important, Iverson had a sense that it
could have been better had he known more starting out. In the 1980’s
he released its successor, J.

[Shows some J interaction.]

In J you can factor verbs that take common nouns out into a verb
train. If you give that train a name, you’ve defined a new verb.

average =: +/ % #

allows you to do:

average MyList

And is equivalent to:

(+/MyList) % (#MyList)

(The sum of the list divided by the number of elements.)

Verb Trains are higher order functions, denoted by placing verbs
adjacent to one another.

[Shows numeronym example.]

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Emerging Languages Camp

Enso: Composing DSL Interpreters, Languages, & Aspects

	Authors:	William Cook

	Time:	16:35

	Session:	https://thestrangeloop.com/sessions/enso-composing-dsl-interpreters-languages-aspects

	Link:	

	Slides:	

Been working on Enso intermittently for 10 years, trying to develop a
new style of programming. Our typical approach is to gather
requirements, write code, and inspect the behavior of the code. But
there’s also this other thing going on: the programmer is figuring out
what strategy they should use to solve the problem. That strategy
becomes a pervasive part of the programmer’s mindset, and influences
all of the code they write.

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

Thursday

	Tracking MMs of Ganks in Near Real Time

	Chrome Security Special Sauce

	Functional Reactive Programming in Elm

	Xiki

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Thursday

Tracking MMs of Ganks in Near Real Time

	Authors:	Garrett Eardly

	Time:	9:50

	Session:	

	Link:	

	Slides:	

Working on distributed backend system for the past two years. For the
past 18 months working on stats platform for League of Legends.

Riot Games aspires to be a player focused game company: this means
ensuring that players can continue to play, without down time. League
of Legends provides lots of post game stats for users.

The initial stats system (2009) was built with a short development
window, and consciously incured technical debt. The system used a
single database (MySQL) with a caching layer. There was a low
concurrency target, and the database was a single point of failure for
the entire game. When database upgrades needed to happen, the game was
down, as well.

An interim step (2012) was sharding the database to achieve some
horizontal scalability. At this time they were treating MySQL largely
like a key-value store: in order to avoid expensive schema changes,
blobs of unstructured data were stored as values (ie, JSON blobs).
Eight different regions worldwide to support players, and the
deployments are non-homogenous.

Today they’re supporting 30+ regions, with more cache and faster
databases (SSD, etc), but fundamentally still the same problems.
Additionally, new data heavy features are extremely difficult to
develop.

The challenges they needed to solve were:

	remove single point of failure

	remove need for downtime during software upgrades

	allow for horizontal scaling.

	enable development of data heavy features

The new system utilizes Riak as its datastore.

There is not single point of failure. Rolling upgrades are possible
(Basho has committed to compatibility between versions). Additionally,
Riak supports hot rebalancing when you add a new node.

Riak works differently than their caching layer over MySQL did. So
what does GET/PUT look like? The request arrives at any one of the
nodes, and is delegated to the nodes that have the data, and when the
threshold number respond, the response is returned. This allows for
tunable eventual consistency. [I wonder how this differs from
Cassandra?]

Challenges:

	Conflict resolution

	Idempotent operations:
When processing a game repeatedly, you don’t want to corrupt the
stats.

	Balancing # of Gets vs Object size

In order to deal with these, they developed some data patterns. Single
game stats are the simplest case: the last write always wins, and
encapsulates the stats for the entire game. There are no modifications
after write.

A player’s match history is more complicatied: you have 1 player and N
games. The matchlist is stored as a single document, so the pattern is
read-update-write [looks like adding a key to a dict]. In this case
the set of games only ever increases, so when there’s a conflict, you
simply take the union of the two conflicting documents.

Aggregate stats and counters are more complicated: they’re sets of
counters mutating as players play the game. For example, incrementing
the number of kills or deaths over the lifetime of play. In that case,
if there are conflicting siblings, you can’t simply union. You can
store a sequence of deltas with the object, which allows you to use
union to resolve concurrent write conflicts. Doing that naively,
however, can lead to very large object sizes, which slows down
performance considerably. The solution is to store a rolled-up,
truncated value, along with a set of “recent games” deltas. This isn’t
a perfect solution: it’s still susceptible to network partitions
during aggregation, but it’s something they’ve decided is managable.

The system is currently live but dark, not deployed worldwide yet.
They are able to begin doing gameplay analysis using the data at this
point.

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Thursday

Chrome Security Special Sauce

	Authors:	Parisa

	Time:	10:40

	Session:	

	Link:	

	Slides:	

“A few of the key ingredients in teh Chrome browser tha help keep you
safe on the web.”

Disclaimers:

	I’m not a developer

	This talk will not make you a better developer

	This is a new talk :)

Working on Chrome’s Security engineering team; originally at Google as
an engineer working to break web applications. Chrome was built with
three core principles: speed, simplicity, and security. So Security in
Chrome is a core focus of the team.

The security team is about 20 full engineers. They are responsible for
designing and implementing security features, finding security bugs,
and reponding to vulnerabilities.

Browser security is important, and its role is growing. Internet crime
continues to rise: attackers have easy, remote access to systems, and
lots of users [targets]. Browser software is particularly hard to
secure: huge user base (for something like Chrome), lots of untrusted
content, and it’s very complex.

Browser Exploits

Browser exploits are malicious code that aims to acheive remote code
execution on a victim’s computer by exploiting some bug in the browsre
itself. These may target plugins like Flash, PDF, and Java, not just
the browser proper. The Chrome team works to thwart these attacks by
finding and fixing bugs, and acknowledging the reality of the
situation.

The Chrome team uses Fuzzing to find bugs in the browser itself.
Fuzzing involves throwing random(-ish) data at a program in an attempt
to see if it will crash. The most basic fuzzer could just read from
/dev/urandom and pipe to the program, but it can by optimized. For
example, figuring out how to cover more LOCs, fuzzing over multiple
cores, and ensuring you can reproduce the bug. Additionally, while you
could just throw random data at the program, that’s probably going
to fail way too early to be interesting. Starting from a valid input
(ie, a correct protocol request) and then varying parameters might be
more interesting.

Google also pays security researches a bounty for discovering and
responsibly reporting bugs. The bounty program runs over time. Google
has also sponsored rewards for proof of concept exploits: running
untrusted code by just opening a web page.

In addition to fixing bugs, it’s critical for users to actually
download and install updates.

[Shows graph of version deployment over time; obvious that users are
using the auto-update feature.]

Bugs will always exist, so it’s important to architect the software
with Defense In Depth. Chrome was the first browser to use process
sandboxing for individual pages/components. This means that an
exploited bug in one area doesn’t lead to a compromise of the entire
browser.

Chrome sandboxes plugins like Flash and its PDF Reader, but not all
plugins can be sandboxed. To address this potential vulnerability –
as well as the use of outdated, potentially vulnerable plugins –
Chrome has different plugin blocking features (click to run, etc).

Phising & Malware Sites

Safe Browsing warns users when they’re visiting a page that Google
believes to contain malware or be phishing.

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2013 Notes

 	Thursday

Functional Reactive Programming in Elm

	Authors:	Evan Czaplicki

	Time:	13:00

	Session:	

	Link:	

	Slides:	

Functional graphics

How do we make graphics simple and declarative? Graphics meaning text
and links, layout, or free-form graphics. So the question was how do
you make text and links flow correctly, how do you design something
for layout (vertical centering, etc), and finally how do you draw
something completely irregular? And how do you do it in a functional
manner?

Quick example:

words : Element
words = [markdown|

Hello StrangeLoop!

Thanks for coming :)
|]

img = image 200 200 "/yogi.jpg"

main : Element
main = asText 42
main = words
main = flow down [words, img]

So Elm lets you declare elements and then begin to flow them in a
simple manner.

Elm also has special elements for free form drawing:

main = collage 200 200
 [fillled blue (ngon 5 50)
 , outlined (dashed red) (circle 70)
]

That’s all well and good: it’s declarative and it’s functional, but
it’s just static.

But what if values changed over time? Turns out others had asked this
question (“Functional Reactive Animation”, Elliott and Hudak, 1997).

Elements are things that are in the scene.

Signals are values that change over time, which increment in discrete
units. So the mouse position isn’t just a pair of integers, it’s a
signal that reports how it changes.

The lift function takes a signal and applies a function to it’s
value as it changes. But lift only knows about the present: it doesn’t
remember what happened in the past. You can imagine that’s problematic
if you’re trying to handle text input.

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Strange Loop 2013 Notes

 	Thursday

Xiki

	Authors:	Craig Muth

	Time:	15:00

	Session:	

	Link:	http://xiki.org

	Slides:	

[Pre-show music makes me feel hostile towards presenter.]

Xiki is a langauge for creating UI languages. Muth has been involved
in Xiki for 10 years. Muth would argue that there aren’t really simple
ways to create user interfaces, and there should be. These just aren’t
interfaces for your users, but for yourself, as well.

Xiki doesn’t try to solve all UI problems, but focuses on a single
problem: nested menus. Many user interfaces consist of vast lists of
choices.

Xiki consists of a web server, a xiki shell command, and editor
plugin[s?].

When we start thinking about new interfaces, a lot of times we start
with an indented list of items. Xiki uses that sort of indented list
as it’s basic data structure:

book flight/
 one way/
 round trip/
check in/
flight status/

[Shows demo of Xiki web server reading a file and generating a mobile
UI on the iPhone simulator.]

Any item that ends with a / is a menu item. Lines that don’t end
in a slash are just plain text. You can also embed Ruby code for
simple dynamic generation.

The built-in web server allows you to also created new items through
the browser.

Xiki provides a command line interface, and generates a desktop GUI,
too. I still don’t know why I’d use Xiki.

[Demonstrates using the Emacs editor plugin to pipe things back and
forth with the Xiki command line.]

Lots of capabilities for Xiki; Muth is obviously very well versed in
using it.

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Strange Loop 2013 Notes

Index

 Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

friday/index.html

 Navigation

 		
 index

 		Strange Loop 2013 Notes »

Friday

 © Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

template.html

 Navigation

 		
 index

 		Strange Loop 2013 Notes »

		Authors:		

		Time:		

		Session:		

		Link:		

		Slides:		

 © Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		Strange Loop 2013 Notes »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

README.html

 Navigation

 		
 index

 		Strange Loop 2013 Notes »

 This repository contains my notes from Strange Loop 2013 [https://thestrangeloop.com/]. The notes
are recorded as reStructured Text, and can be built using Sphinx [http://sphinx.pocoo.org/] by
running make html.

You can read the most recent version online at
http://strange-loop-2013-notes.readthedocs.org/.

 © Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

emerging-languages/bodol.html

 Navigation

 		
 index

 		Strange Loop 2013 Notes »

BODOL: How to Accidentally Build Your Own Language

		Authors:		Bodil Stokke

		Time:		17:10 - 17:40

		Session:		https://thestrangeloop.com/sessions/bodol-or-how-to-accidentally-build-your-own-language

		Link:		

		Slides:		

 © Copyright 2013, Nathan Yergler.
 Created using Sphinx 1.2.2.

